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The results of an experimental investigation dealing with finite-amplitude internal 
solitary waves in a two-fluid system are presented. Particular attention is paid to 
characterizing solitons in terms of their shape and amplitude-wavelength scale 
relationship. Two cases are considered, viz., a shallow- and a deep-water configuration, 
in order to study the depth effect upon the propagational characteristics of the waves. 
Comparisons are made between the experimental results and existing internal-wave 
theories. I n  addition, discussion is presented describing how these existing theories 
may be extended to include higher-order nonlinear and viscous effects. 

1. Introduction 
The study of finite-amplitude effects in internal-wave systems has received a great 

deal of attention in recent years from numerous investigators; notably Benney (1966), 
Benjamin (1966, 1967), Davis & Acrivos (1967), Ono (1975), Kubota, KO & Dobbs 
(1977)) among others. The recent observations of large-scale solitary wave motions in 
both the atmosphere (Christy, Muirhead & Hales 1978) and in the ocean (Osborn & 
Burch 1980; Osborne, Burch & Scarlet 1978) have generated additional interest in 
this phenomen0n.t Much of the theoretical work which has been done has been 
concerned with analysing fluid motion in systems where the internal waves are weakly 
nonlinear and are in some sense long relative to the overall depth of the fluid. Following 
what is, by now, a familiar procedure, one may describe these wave motions by 
balancing nonlinear and dispersive effects in the governing equations. Such a pro- 
cedure leads directly to an expression governing the long-time evolution of the stream 
function, which is the Korteweg-de Vries equation. This equation has been studied a 
great deal within the past decade and methods have been established to construct 
exact analytical solutions for arbitrarily prescribed initial conditions (cf. Segur 1973). 

In  addition to these shallow-water theories, effort has been spent in analysing non- 
linear internal wave motion in fluids of infinite extent (Benjamin 1967; Ono 1975). 
Here, long waves are measured relative to an internal length scale characteristic of 
the thermocline region, rather than the total fluid depth. For this infinite-depth 
problem, dispersion enters a t  lower order, and the resulting stream-function evolution 
equation has a dispersive term which is a Hilbert transform. This contrasts with the 
triple-derivative term found in the Korteweg-de Vries equation. Recently, Kubota 

t An interesting account of the practical difficulties associated with oil-drilling activities in 
the presence of 100 m internal solitary waves is presented in OiE and Gas JoumaE, 17  September, 
1979, pp. 66-67. 
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et al. (1978) derived an evolution equation which interpolates between these shallow- 
and deep-water limits. This equation, which is valid provided the thermocline thick- 
ness is sufficiently smaller than the total fluid depth, has a dispersive term that is a 
transcendental integral operator, and which reduces to a triple derivative and a Hilbert 
transform in the shallow- and deep-water limits, respectively. 

In contrast to the great deal of analytical work which has been done, there appears 
to be a dearth of experimental study dealing with finite-amplitude effects on long 
internal waves. Walker (1973), in an investigation of internal interfacial waves in a 
two-fluid system, presents data over a limited range of depth ratios, but these results 
are somewhat inconclusive due to the dominance of viscous effects and the small tank 
size used. Yates (1978) recently made measurements of nonlinear wave motions in a 
continuously stratified system. However, a majority of these experiments were made 
a t  fairly large wave amplitudes, and no definite conclusion could be drawn regarding 
the accuracy of any of the aforementioned weakly nonlinear theories. More recently, 
Kao & Pao (1979) presented experimental measurements of solitary-wave propagation 
for a thin pycnocline stratification. These results, however, were confined to shallow- 
water conditions and no attempt was made to establish whether the spatial scales of 
the waves, correlated with some measure of the wave amplitude, were consistent with 
the shallow-water theory. 

The primary motivation for the present investigation is to try and fill this experi- 
mental void and provide a quantitatively reliable data base, upon which one may 
assess the validity and determine the regions of applicability of the various theories 
dealing with finite-amplitude internal waves. Our particular concern will be to study 
how the important characteristics of these waves are altered, owing to the changing 
importance of the dispersive terms, as one proceeds from a shallow-water system to 
one which is in some sense deep. In pursuing this problem, it is felt that the most 
convenient experimental approach is to consider pulse-like permanent waveform 
disturbances whose characteristics can be readily compared with the analytic solitary- 
wave solutions of the relevant evolution equations. I n  these comparisons between the 
theories and the experiments, special emphasis will be placed upon some of the geo- 
metrical features of the disturbances, such as profile shape, and the functional relation- 
ship between the amplitude of a solitary wave and its wavelength. As will be discussed, 
we feel that this amplitude-wavelength scaling represents the most fundamental 
difference between the various theories, and experimentally is the most definitive way 
of establishing the domain of validity of each theory. A less sensitive criterion would 
involve the use of phase speed measurements, but as will be shown such measure- 
ments would have to be extremely precise in order for the data to be useful in dis- 
criminating between theories. 

In  addition to  the aforementioned discussion, a secondary intent of this investiga- 
tion is to discuss how some of the existing internal-wave theories may be extended to 
include higher-order nonlinear effects or viscous effects, and to indicate when these 
corrections are important. 
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2. Theoretical description 
2.1. Review of existing theoretical analyses 

All of the existing analytical work relevant to the nonlinear internal-wave studies 
conducted in the present investigation may be roughly categorized as follows: 
(a) shallow-water theory (Benjamin 1966) 

h / H  B I, h/H = O(I);  

( b )  deep-water theory (Benjamin 1967; Ono 1975) 

h/H-+O, h/h B 1 ;  

(c )  finite-depth theory (Kubota et al. 1978) 

h / h B  1, h / H <  1;  

where h is a measure of the horizontal extent of the wave, h is an intrinsic length scale 
associated with the density stratification (e.g. the thermocline thickness) and H is 
the total fluid depth. 

All of these theories may (at least to first order) be cast in the framework of a 
generalized evolution equation commonly known as Whitham’s equation which is 
written as 

Here, y(x,t) measures the internal wave displacement field, c(k)  is the linear dis- 
persion law (with co being the linear long-wave phase speed), and c1 is a functional of 
the k = 0 eigenfunction. 

For shallow-water internal waves, Benjamin (1966) shows that the linear dispersion 
law expanded for small wavenumbers Ic has tlie quadratic dependence 

and, for this case, Whitham’s equation reduces to the familiar Korteweg-de Vries 
(KdV) equation 

all + corx + c1rrx + c2rzzx = 0. 

(The actual definitions o fc0 ,  c1 and c2 may be found in the cited reference and are not 
repeated here.) The solitary-wave solution to this equation has been known for some 
time and is given by 

x - ct 
q ( x  - ct) = a sech2 - 

A ’  (3a)  

where 

= Go+>, ac ah2 = 1 2 2 .  C 
3 C1 

Here, a is the maximum displacement and c is the phase speed correct to O ( a / H ) .  
From equation (3  c)  one observes that the solitary-wave amplitude-wavelength 
scaling required for a wave to be described correctly by the shallow-water theory is 
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Benjamin (1967) and Ono (1975) consider the problem of an infinite-depth fluid, 
where the internal wave is long relative to the intrinsic length scale h, associated with 
the density stratification. Waves in this system are more dispersive than shallow- 
water waves, the expanded dispersion law having linear rather than quadratic 
dependence upon k, and the resulting evolution equation (often called the Benjamin- 
Ono equation) is written 

where H(vXx)  denotes the Hilbert transform of qxx. 

be the Lorentzian profile given by 
The solitary-wave solution to this equation has been found by Benjamin (1967) to 

ah2 
r ( X - C t )  = (x - C t ) Z  + h2’ 

It is of interest to note that the character of the solitary-wave amplitude-wavelength 
scaling required for this deep-water system, viz. 

is distinct from the shallow-water scaling given by equation ( 3 d ) .  Much of the sub- 
sequent discussion regarding the experimental results will focus upon this distinction. 
We remark here that, in our opinion, this amplitude-wavelength scaling is the most 
fundamental difference between the shallow- and deep-water theories, and represents 
the most sensitive way of establishing the domain of validity for each theory. For 
parameters typical of this experimental investigation, wavelength predictions of the 
two theories may differ by more than 100 % for a given wave amplitude. Thus, high 
experimental accuracy is not a requirement for discrimination between the theories. 
Furthermore, regression statistics (particularly on log-log plots) utilizing the entire 
data base may be used to establish whether the KdV scaling A/h N s-* or the 
Benjamin-Ono scaling h/h N E--1 (where E = a/h) is most appropriate for a given 
system. Of lesser concern, we feel, is the degree to which the two theories are able to 
predict the experimentally measured phase speeds. This is because both theories 
predict a linear dependence of phase speed upon wave amplitude. Thus, to discriminate 
between the two predictions one must be able to resolve slight differences in the slopes 
of the amplitude-phase-speed relationship. We emphasize that these differences are 
small. For parameters typical of our experiment, phase-speed measurements would 
have to be made to an accuracy of about 1 %  before differences between the two 
theories could be resolved. As a consequence, we have chosen to use the amplitude- 
wavelength scale relationship as the primary basis for our assessments. 

In addition to the KdV and Benjamin-Ono theories, Kubota et al. (1977) derived 
an evolution equation governing the propagation of long waves in fluids which are 
neither shallow nor deep, and in which the thermocline is much smaller than the total 
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fluid depth. I n  this case, the dispersion law has the transcendental wavenumber 
dependence 

cm N kcothkh, 

and the finite-depth evolution equation resulting from this dispersion law is given by 

CO 

] dx’. (6) a t + ~ o q r , + c l ~ ~ , + c  - q(x’,t) coth-(x-x‘)-sgn- 
a7 22 77 (x - x’) 

22x2j1,,, [ 2H H 

Kubota et al. note that the finite-depth equation reduces to the KdV and Benjamin- 

The solitary-wave solution to this equation has been found by Joseph (1977) to be 
Ono equations in the shallow- and deep-water limits, respectively. 

v(x-ct) = a/(cosh2 h 
where 

c=co-2c2  1--cot- , [ 2nH 27 
H 8c2 

ahcot- = --. 
h C1 

As can be seen from equation (7c), the solitary-wave amplitude-wavelength scaling 
in a finite-depth system is transcendental, which contrasts with the algebraic rela- 
tionships derived in the KdV and Benjamin-Ono analyses.’ 

It is worth noting at  this point that all of the previously described evolution equa- 
tions possess soliton as well as solitary-wave solutions, as demonstrated by Xegur 
(1973) (KdV), Meiss & Pereira (1978), Chen, Lee & Pereira (1979) (Benjamin-Ono) 
and Kubota et al. (1978) (finite depth). 

All of the analyses which have been discussed up to this point are first-order theories, 
so that terms of order (alh) have been retained in the analysis but the second-order 
nonlinear and dispersive terms are neglected. However, the experimental data (to be 
discussed) involve waves having amplitudes as large as a/h z 0.6. For these distur- 
bances the assumption of weak nonlinearity might no longer be valid. To assess what 
effect the inclusion of higher-order terms has upon the solitary-wave amplitude- 
wavelength scaling, we have extended the KdV analysis for a two-fluid internal wave 
system to  O(a,/h)2 (details of the derivation and definition of the various constants 
are presented in appendix A).  The resulting evolution equation takes the form 

(8) 
27 + coqz + c1rrz + czrzzr + c3752 + c4(V/xz)z + C5(Y3), + d73z = 0- 

The solitary-wave solution to this extended evolution equation is given by 

q(x, t)  = a sech2 - -ct [ 1 + C tanh2 - 
h h 

The solitary-wave amplitude-wavelength relationship is given by 
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where a(1), a(2) and C are defined in appendix A. We remark here that the analysis 
presented in appendix A considers both the rigid lid and free surface boundary con- 
ditions. For conditions typical of the present experimental configuration, however, 
the quantitative differences between the two analyses is not large. For example, in 
the shallow-water configuration (discussed in the next section), a t  h/h = 10 the 
second-order rigid-lid theory yields a/h = 0.0676, whereas in the free-surface analysis 
a/h = 0.0579. For comparison, the first-order results are a/h = 0.0577 (rigid lid) and 
a/h = 0.0552 (free surface). For consistency with the finite-depth theory (which 
incorporates the rigid-lid boundary condition), all of the subsequent KdV calculations 
will be based upon the rigid-lid analysis. 

2.2. Viscous effects 

Preliminary experiments, which are described in 93, revealed that in the present 
facility the influence of viscosity upon the internal-wave propagation characteristics 
could not be neglected. It was observed, for example, that, for conditions typical of a 
majority of the experiments, viscous stresses produce a 50 per cent attenuation in the 
internal-wave amplitude as the disturbance propagates one length of the tank. Clearly, 
the previously discussed inviscid theories are incapable of describing such phenomena, 
and this provided the motivation for a theoretical effort designed to study analytically 
the effect viscosity has upon the experimentally generated internal waves. 

One simple model which proves to be useful is Keulegan's (1948) analysis for the 
gradual viscous damping of surface gravity waves. This model has been modified to 
include internal interfacial waves in a two-fluid system. I n  essence, the theory assumes 
that the energy dissipation in the viscous boundary layers along the solid surfaces 
and within the interface region is balanced by a net decrease in the solitary-wave 
amplitude. The compensation for this amplitude attenuation is an increase in hori- 
zontal extent of the wave such that the fundamental KdV scale relationship 
h / H  = ae-4 is preserved. Details of the analysis are presented in appendix B. The 
resulting expression governing the solitary-wave amplitude decay is given by 

where 

(One may refer to appendix B for definition of the various parameters appearing in 
the above expressions.) These equations reduce to the expressions derived by 
Keulegan (1948) (with one small proviso as noted in appendix B) in the limit p2+ 0. 

The preceding expressions present a convenient way of calculating wave amplitude 
attenuation, providing the initial disturbance is a solitary wave and one is considering 
a two-fluid system. It is also of interest, however, to describe the evolution of internal 
waves emanating from arbitrary initial conditions and propagating through a viscous 
medium having a variable density gradient. A related problem, viz. the evolution 
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equation for a shallow-water surface gravity wa.ve in a viscous fluid, has been derived 
by Kakutani & Matsuuchi (1975) and solved numerically by Matsuuchi (1976). This 
analysis has been extended here to include internal-wave systems. The details of the 
analysis are presented in appendix C. The resulting equation governing the evolution 
of the stream function 

is given by 
1c.b 2, t )  = fft, 7) $1.) 

where c1 and c8 are the same coefficients defined for the inviscid KdV equation and 

(The various quantities are defined in appendix C.) Although no exact solution to the 
above equation has been identified analytically, solutions have been obtained numeric- 
ally using the pseudo-spectral technique of Fornberg (1977). Presentation of the 
results of these calculations, however, is deferred until after discussion of some of the 
experimental results. 

3. Experimental results and comparison with theory 
3.1.  Experimental apparatus and procedure 

The experiments were performed in the TRW internal-wave facility which is shown 
schematically in figure 1 .  The wave tank, constructed from 4 in Plexiglas, is approxi- 
mately 6 metres long and has a 45 ern x 60 cm cross-section. The lower boundary of 
the tank consists of a specially constructed false bottom, fabricated with reinforced 
blancher ground tooling plate, which was introduced in order to minimize variations 
in bottom topography. Over the 6 metre length of the channel, the average variation 
in bottom elevation is less than about 0.02 cm. Note that there is no wave-absorp- 
tion device at  the downstream end of the tank, so that waves are free to  reflect off the 
end wall and propagate back through the test section. 

The fluid system chosen for use in experimentation consists of two mutually 
immiscible liquids having different specific gravities. Several considerations went into 
the choice of this system. First of all, the two-layer stratification is an extremely 
simple system, and it is believed that there is no advantage in using a system which 
is, in some sense, more complicated (e.g. continuous salt stratification). All of the 
physics relevant to the present study, vix. nonlinearity, dispersion, ability to vary 
overall fluid depth, existence of an intrinsic internal length scale, etc., are contained 
in the simple two-fluid system. Secondly, the two-fluid system is particularly well 
suited for providing quantitatively reliable experimental data, because the interface 
is always well defined and experiments are quite repeatable. As a by-product of 
having an int,erface which is, for all practical purposes, infinitesimally thin, wave- 
amplitude measurements may be made in a straightforward and unambiguous manner 
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Probe: 5 b  5a  4 b  4a 3b 3a 2b 2a 1 

, 6 m  _I 
FIGURE 1. Schematic diagram of experimental apparatus. 

using capacitance gauges, and since each displacement measurement requires the use 
of only a single probe (in contrast to the probe arrays required in continuously strati- 
fied fluids) one is free to use several such probes longitudinally displaced in order to 
study the spatial evolution of a disturbance. 

The immiscible fluids chosen for use in this investigation were Freon TF (specific 
gravity 1.58, v = 0.0044 cm2 s-l) and deionized water. To keep the fluid system as 
clean as possible, both the water and the Freon were filtered using 5 pm filters prior 
to being introduced into the tank. In  addition, a surface skimmer was utilized in 
order to ensure that the interface between these two fluids remained clean during the 
experiments. 

Interfacial disturbances were generated using a displacement-type wavemaker, 
similar to that described by Walker (1973). In  the quiescent state, the wavemaker 
paddle straddles the interface, as depicted in figure 1. Pulse-like disturbances are 
generated by imposing a single downward displacement of the paddle. This is accom- 
plished by coupling the paddle to a geared drive motor through a scotch yoke. The 
drive motor, gear reduction unit, and the various moving parts are all mounted on 
structures attached directly to  the floor of the laboratory. This assures that vibrations 
associated with operation of the wave-generating mechanism are decoupled from the 
tank itself. 

The wavemaker has two degrees of freedom, viz. the length and duration of the 
paddle stroke, and these may be varied between 0-5 cm, and 0.5-5 seconds, respec- 
tively. It is important to recognize that the wavemaker does not have sufficient 
degrees of freedom to produce arbitrarily prescribed waveforms (e.g. solitary waves) 
as initial conditions to the experiment. It can only produce pulse-like disturbances 
which, in general, are not solitary waves. But, as previously noted, all of the evolution 
equations being studied in this investigation admit soliton solutions, so that the 
permanent waveform disturbances desired for the experiment were generated by 
adjusting the amplitude and duration of the paddle displacement (in an empirical 
fashion) such that a single soliton (plus a dispersive tail) emerged downstream of the 
wavemaker. Because the phase velocity of the soliton is greater than the group 
velocity of the tail, it separates from the oscillatory portion of the signal. Once the 
soliton has evolved and separated from the dispersive wavetrain, one is able to 
examine the important characteristics of this permanent waveform disturbance as it 
propagates through the test section. Following the aforementioned procedure, soliton 
disturbances in the amplitude range 0.025 < E < 0.5 are readily generated in this 
facility. 
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Reflected wave t -  Incident wave 

FIGURE 2. Definition of wavelength. 

Measurement of the interfacial displacement were made using nine longitudinally 
displaced single-element capacitance gauges of the type described by Lake et al. (1977). 
These were mounted on five separate traversing mechanisms positioned above the 
water surface. The first probe was positioned 20 cm downstream of the wavemaker in 
order to record the initial disturbance created by the paddle displacement (see figure 1 
for location and nomenclature of the remaining probes). The paddle displacement was 
monitored using a linear variable-displacement transducer (LVDT) mounted on the 
wavemaker. During the course of a run, the outputs of the nine capacitance gauges 
plus that of the LVDT were simultaneously recorded on a multichannel strip chart 
and on a 14-channel FM tape recorder. 

Typically, experiments were initiated by starting the strip chart and tape recorder 
with the fluid in a quiescent state. The wavemaker was then actuated to yield a 
single downward thrust of the paddle. The resulting initial interfacial disturbance 
was recorded by the first probe, probe 1. Subsequently, this initial pulse-like wave 
evolved into a soliton followed by a dispersive wavetrain. These propagated down the 
tank past the eight data probes, probes 2a-5b, reflected off the endwall, and propag- 
ated back through the test section in the opposite direction. When the reflected wave 
passed probe 2a, the experiment was considered to be completed, and the monitoring 
equipment was shut off. Once the fluid had returned to a quiescent state (roughly 
1-2 minutes later), the nine capacitance probes were calibrated by traversing them 
through the interface and correlating the probe output with its vertical position. The 
total elapsed time between the start of the experiment and the completion of the 
calibration was normally less than 5 minutes. 

The above procedure was repeated several times using different values of the 
paddle displacement to generate various-amplitude waves. Following such a series of 
experiments, the FM analog tape was digitized at a rate of 100 samples/s per channel 
(real time), and the resulting digital data were stored for numerical processing. 
Typical quantities which were computed in the data-reduction program included the 
interfacial displacement (in engineering units) versus time for all nine capacitance 
gauges, and the maximum amplitude and horizontal extent of the incident and 
reflected waves recorded by each probe. Figure 2 illustrates the manner in which the 
amplitude and wavelength were computed. Note that only the forward portion of the 
soliton profile was used, since conditions in the ‘wake ’ of the disturbance were never 
truly quiescent. Two definitions of the disturbance wavelength were used. The first, 
denoted hW5, simply represents the half-amplitude point and is defined by 
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A second definition, denoted A,, was also used and is given by 

Being an integral quantity, it is felt that A, provides a better (i.e. less noisy) measure 
of the soliton wavelength than does the half-amplitude point. This turns out to be an 
important consideration in analysing the results, since most of the data scatter is 
introduced through the experimental determination of the soliton wavelength. A, is 
related to the A's usedin the KdV, Benjamin-Ono, and finite-depth analyses (equations 
(3 a ) ,  (5 a )  and (7 a )  respectively) as follows : 

KdV, A, = AKdV; 
Benjamin-Ono, A, = &A,,o; 

Finite depth, A, = H cot H/A,,. 

Two test conditions were chosen for consideration so that the depth effect upon 
the soliton amplitude-wavelength relationship could be investigated. These are 
identified as follows : 

Configuration ' = hFreon = 'Freon + 'water 

Shallow water 1.366 cm 8.314 cm 6.086 
Deep water 1.366 cm 49.236 cm 36.046 

3.2. Qualitative results and discussion of viscous effects 
The purpose of the present investigation is to study how the propagation charac- 
teristics of internal solitons are altered as one proceeds from a shallow-water system, 
presumably governed by the KdV equation, to a deep-water regime where the 
Benjamin-Ono analysis should be more appropriate. It has been previously empha- 
sized that our primary concern is the study of permanent waveform disturbances. Of 
less importance for our purposes is what might be termed the period of evolution or 
generation; i.e. that period of time when an initial pulse-like disturbance (which is not 
a soliton) evolves into one or more solitons followed by a dispersive wavetrain. From 
an experimental point of view, it is important to ensure that this transient period of 
evolution is not long, relative to the time required for the disturbance to propagate 
to the end of the tank. Figure 3 presents the results of a preliminary test where the 
above criterion was not satisfied. The measurement was made using a Freon depth of 
about 7 cm, an overall fluid depth of about 40 cm. A single capacitance probe was 
positioned roughly 4 m from the wavenumber. Time increases to the right in this 
figure. The several pulses depicted in these records are a result of multiple reflections 
of the initial disturbance off the endwalls of the tank. The interesting feature to be 
observed in this figure is the extremely long evolution time required before a soliton 
is produced. Note, for example, that the initial pulse (which is not a soliton) propagates 
at least 36 m or roughly 6 tank lengths before one could say that the leading soliton 
is reasonably well separated from the remaining portion of the wavetrain. One also 
observes from this figure that the wavelength of the disturbance is quite long; being 
almost 50 yo of the length of the tank. 

Obviously, such features are undesirable from the standpoint of studying soliton 
characteristics, owing to the extremely long length of the disturbance (relative to the 
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x = ct 
= 2 tank lengths 

= 1 0 2  

= 1 2 2  

= 1 4 3  t increasing 

FIQURE 3. Results of a preliminary test; h N 7 cm, H N 40 cm. 
___) 
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FIGURE 4. Example of multiple-soliton generation; shallow -water configuration. 

length of the tank) and the predominance of endwall effects. These problems may be 
alleviated by sufficiently decreasing the fluid layer depths. Hammack & Segur (1974) 
present a simple argument for estimating the sorting time required for a soliton to 
separate from the dispersive portion of the wavetrain. Using their model (modified 
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3a 

2b  

2a 

FIGURE 5. Example of single-soliton generation ; shallow-water configuration. 
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26 

FIGURE 6. Example of the generation of a dispersive wavetrain; shallow-water configuration. 

for an internal wave system), one estimates that, for a Freon layer depth of 1.5 em, 
the sorting time for a typical wave in the present facility should be less than the time 
required for the pulse to propagate 50 per cent of the length of the tank. This is con- 
sidered to be acceptable, and all of the remaining experiments were conducted using 
this nominal value for the depth of the Freon layer. 

Having, in some sense, identified the best configuration for testing, several experi- 
ments were performed using the probe arrangement depicted in figure 1 to study 
qualitatively the evolution of the various types of disturbances which can be produced 
in this facility. Some typical results of these tests are presented in figures 4-6. The 
test conditions for these runs are those of the shallow-water configuration identified 
in 5 3.1. Time increases to the left in these figures, and the second wave in each record 
is the reflection of the incident wave of€ the endwall of the tank. It should be pointed 
out that the sensitivities and gain settings of the various probes are not the same, so 
that relative-amplitude measurements between probes are not meaningful. Figure 4 
presents a case where multiple solitons are formed from the initial condition. One 
observes here that a t  least two (and possibly three) solitons emerge. Note that, as the 
disturbance propagates down the tank, the relative spacings between adjacent peaks 
irlcreases; a result of the difference in nonlinearity between the various solitons. 
Figure 5 shows the formation of a single soliton, followed by what appears to be a 
dispersive wavetrain. The data shown in this figure typify those which were used to 
obtain the quantitative results described in 333.2 and 3.3. 
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1.2 Inviscid KdV 
Viscous KdV 
(equation (1 1 )) 

Xlh  
FIGURE 7 .  Viscous decay of interfacial wave amplitude. Initial conditions: 

measured profile for case C. 0, case A ;  0, case B;  A, case C .  

Finally, figure 6 shows a case where a dispersive wavetrain, but no soliton, is formed. 
The initial condition for this disturbance was a wave of depression, which was pro- 
duced by reversing the direction of the wavemaker. That only an oscillatory waveform 
is generated from this initial condition is qualitatively consistent with the results of 
Hammack & Segur (1974) (their figure 7 )  and is predicted by the inverse-scattering 
solution of the KdV equation. 

If we re-examine the single-soliton example shown in figure 5 ,  it is found that, in 
actuality, a wave of permanent form is never realized experimentally. Note, for 
example, in the record for probe 2a, that as a result of viscous dissipation the ampli- 
tude of the reflected wave is only about 30 per cent of the incident-wave amplitude. 
Clearly, viscosity has a non-negligible influence upon the propagation characteristics 
of the waves being studied in this investigation. To quantify the amount of such 
viscous attenuation, experiments were performed where multiple reflections off the 
endwalls were monitored in order to increase effectively the distance travelled by a 
given disturbance. The amplitude history of three such experiments (normalized by 
the incident-wave amplitude measured at probe 2a) is shown in figure 7 .  Cases A 
and B represent data obtained in the deep-water configuration with initial amplitudes 
eOa = 0.305 and 0.109 respectively. Case C represents shallow-water data with 
eZa = 0.269. From these data, one sees that viscous dissipation acts to attenuate the 
wave amplitude by roughly 50 per cent per pass through the test section. These data 
are also useful as a basis for testing the viscous theories described in 8 2.3. For example, 
figure 7 presents the numerically calculated solution to the viscous KdV 
equation (1 l), using as an initial condition the measured wave form recorded by probe 1 
(20 em from the wavemaker). Two calculations were performed, one with and one 
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FIGURE 8. Effects of viscosity upon amplitude- wavelength scale relationship. 
__ , inviscid theory; - - -, viscous theory. 

without the viscous term, and the output included the maximum disturbance ampli- 
tude as a function of propagation distance. From the results of the inviscid calculation, 
one finds that during the initial evolution period (when the leading soliton is being 
formed) the maximum amplitude grows. However, at about x/h equal to  80, the 
soliton has separated from the rest of the waveform, and beyond this point the 
maximum amplitude is constant. Examining the second calculation, one can clearly 
see the effect viscosity has upon the evolution of the initial disturbance. One finds, 
for example, that, for x/h less than about 10, the peak amplitude grows, but beyond 
this point viscosity becomes important, and the amplitude is attenuated by roughly 
40 per cent before the solution merges into the data. Numerical difficulties prevented 
continuation of this calculation beyond about x/h = 200, but application of Keulegan’s 
modified analysis, given by equation (lo), yields reasonably good agreement with the 
remaining portion of the data.? 

From this demonstration of the importmanee of viscosity on the disturbance ampli- 
tude, it is natural to ask how viscosity affects the soliton wavelength. This is an 
important question. Since the propagation characteristics of the interfacial waves 
are to be characterized in terms of their amplitud+wavelength relationship, it is 
necessary t o  establish whether this relationship has any functional dependence upon 
viscosity. In  a qualitative sense, one may reason that, for a sufficiently large-amplitude 
soliton, the important dynamical balance lies between the nonlinear and dispersive 
terms in the governing equations. Viscosity should be important only in that it acts 
to  attenuate the wave slowly, but should not directly influence the soliton scaling 
given by ah2/h3 = constant (this may be considered to be a quasi-steady approxima- 
tion). It is clear, however, that, as viscosity acts to decrease the disturbance ampli- 
tude monotonically, eventually, the strengths of the viscous and nonlinear terms 
will become of comparable order, At this point, the quasi-steady approximation 
becomes invalid, and viscosity must enter directly into the scaling. The degree to 
which this scale relation is affected by viscosity is not easily predicted analytically, 

t Note added in proof: use of the more-accurate expression of Hammack, Leone & Segur 
(1981) yields slightly better agreement with these data. 
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FIGURE 9. Profile shape r](z)/a versus z/hO.&; shallow-water configuration. - -0- -, ‘seeha’; 
-_  x-- Lorentzian. Data compiled from runs: 4125-1, E = 0.04; 4125-2, E = 0.05; 
4125-1, E = 0.11; 4124-3, E = 0.18; 4125-6, E = 0.26; 4129-1, E = 0.57; 4129-1, E = 0.68. 

but we may again appeal to the numerical solutions of the viscous KdV equation and 
theoretically quantify what effects should be found in the present facility. The results 
of such a calculation are shown in figure 8 where h,(t)/h is plotted versus e( t )  (with 
time appearing parametrically). For reference, the inviscid scaling ah:/h3 = constant 
is also presented. The initial condition for this calculation was a sechz profile (with 
e(t = 0) = 0.4) having the proper solitary-wave amplitude-wavelength relationship 
as predicted by the inviscid theory. From these calculations, one finds that, for e(t) 
greater than about 0.2, the amplitude-wavelength history follows the inviscid line, 
verifying the quasi-steady nature of the problem. As the amplitude decreases, how- 
ever, viscosity begins to alter the scale relation in such a manner that h,/h grows 
more slowly than €4. The effect is not unduly large, though (except for very small 
waves, viz. e < 0.02)) and we conclude that viscous effects on the amplitude-wave- 
length scaling in the present facility are sufficiently small that meaningful measure- 
ments of this relationship may be obtained and compared with inviscid theoretical 
results. 

3.3. Quantitative results 
In  the shallow-water configuration ( H l h  = 6-086, Ap/p = 0.33) tweIve runs were 
made to examine the profile shape and amplitude-wavelength scale relationship for 
nonlinear internal solitons. Each run consisted of 16 realizations of a waveform 
(8 probes measuring incident and reflected waves), so that the shallow-water experi- 
ments yielded almost 200 profile measurements. In  a strict sense, however, not all of 
these measurements may be considered to be totally independent, since any one run 
yields 16 measurements of the same disturbance, although one must remember that 
this wavo is slowly varying in time due to viscosity, so that it is not exactly the same 
wave a t  each measurement station. The amplitudes of these waves varied over a 
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FIGURE 10. Amplitude-wavelength scale relationship; shallow-water configuration. (Solid 
symbols represent reflected waves.) 

decade between 0.025 < E < 0.75 with corresponding wavelength variations 
4 < h,/h < 15. Figure 9 presents the measured wave profile shape, r(x)/a plotted 
versus xlh,,.,. In  order to provide some estimate of the variance between profiles, 
seven individual wave-form realizations in the amplitude range 0.04 < E < 0.7 are 
presented. For reference, both the ‘sechz’ and Lorentzian profiles are also shown in 
this figure. Examination of the results reveals that the agreement between the 
shallow-water data and the ‘sech2’ profile predicted by the KdV theory is quite good. 

Such agreement between the theoretically predicted and experimentally measured 
wave forms is encouraging; but we have not subjected the theory to a very stringent 
test, because such profile comparisons introduce the artificial constraint of requiring 
the theory and experiment to agres at xlh,., = 0 and I .  For wave profiles that are 
reasonably similar, one would not expect large differences to occur between the two 
curves. A stronger test of the theory would be to establish whether the theoretically 
predicted one-parameter family of such ‘sech2’ profiles or, in essence, the amplitude- 
wavelength relationship, is in agreement with the data. This is most conveniently 
displayed on a log-log scale, as shown in figure 10, where h,/h is plotted versus E .  

These data represent amplitude-wavelength measurements of both the incident and 
reflected waves. As there may be some question rogarding the validity of the reflected- 
wave data, since these waves are in effect seeing their own ‘wake’, these data are 
identified using solid symbols. In  general one finds, though, that the incident and 
reflected wave data behave in a reasonably similar manner. Also shown in figure 10 
are the theoretical scale relations predicted by the KdV, Benjamin-Ono and 
finite-depth analyses. Several comments may be made regarding the data shown 
in this figure. First of all, it is not unreasonable to expect that the Benjamin-Ono 
infinite-depth theory should poorly describe the results of a shallow-water experi- 
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FIGURE 1 1 .  Profile shape ~ / ( z ) / a  versus x/A0 5 ;  deep water configuration. - - 0- -, ‘seeha’; 
_ _  x - -, Lorentzian and finite depth ( E  = 0.6); - -a- -, finite depth (8 = 0.06). Data 
compiled from runs: 4/27-3, E = 0.06; 6/1-7, E = 0.08; 6/1-4, E = 0.11; 4/27-2, E = 0.11; 
6/1-1, 6 = 0.17; 6/1-2, E = 0.26; 6/1-2, E = 0.56. 

ment. Indeed, this is observed in figure 10 where one finds that the slope of the 
Benjamin-Ono line is in total disagreement with the data. The finite-depth theory 
does better, but the shallow-water KdV theory yields by far the best agreement with 
the data. The agreement, though, is by no means exact. One notes, for example, that 
for e less than about 0.05 the theory slightly overpredicts the experimentally measured 
wavelengths by 10-15 per cent,. This is not inconsistent with our previous discussion 
( 3  3.2) regarding the effects of viscosity on the amplitude-wavelength scale relation- 
ship. There it is shown that numerical solutions of the viscous KdV equation ( 1  1 )  
yield wavelengths which are somewhat smaller than those the inviscid theory would 
predict for values of e less than about 0.1. One suspect,s, then, that, for the very- 
small-amplitude portion of the data, the nonlinear effects have been weakened to such 
an extent that the viscous terms are of comparable order. This argument seems 
plausible, but could be significantly strengthened by additional experimentation. 
Over the remaining portion of the data the slope of the KdV theory and the data are 
reasonably close, but for e greater than about 0.2 the theory slightly underpredicts the 
measurements. However, the second-order KdV theory, derived in 3 2.2, shows 
noticeably better agreement with the data, indicating that the small discrepancy 
between the data and the first-order theory for e > 0-2 is likely due to higher-order 
nonlinear effects. 

Upon completion of the shallow-water experiments, the overall fluid depth ratio 
was increased to H l h  = 36.044 and eight additional experiments were conducted to 
ascertain what effect the increased depth has upon the amplitude-wavelength scale 
relationship. The range of amplitudes studied varied between 0-03 < E < 0.6 with a 
corresponding span of wavelengths 4 < h,/h < 20. Note that‘ in terms of the total 



244 C .  B. Koop and G. Butler 

Benjamin-Ono (infinite depth) 

< . x‘ 10 

1st order KdV 

1 .o 
0.0 1 0.1 1 

E = a/h 

FIGURE 12. Amplitude-wavelength scale relationship ; deep-water configuration. (Solid symbols 
represent reflected waves.) 

fluid depth H ,  0.11 < h,/H < 0.56. Hence, for these experiments the depth is always 
greater (and in some cases much greater) than the wavelength of the disturbance. 

Figure 11 presents the measured deep-water profile shape, qlh,.,. Again, to provide 
some degree of statistical significance seven individual wave records in the amplitude 
range 0.06 < E < 0.6 are presented. For reference both the ‘sech2’ and Lorentzian 
profile shapes are shown. In addition, wave profiles corresponding to Joseph’s (1977) 
solitary-wave solution to the finite-depth equation are also presented. The two finite- 
depth profiles depicted are for E = 0.06 and E = 0.6; i.e. the range of E over which the 
data were compiled (note that the B = 0.6 finite-depth profile is indistinguishable from 
the infinite-depth Lorentzian profile). We note from this figure that most of the data 
lie between the ‘sech2’ and Lorentzian profiles particularly in the tails of the waves. 
The E = 0.06 finite-depth theory ostensibly yields good agreement with the data, but 
actually all the data should lie between the two curves E = 0.06 and E = 0.6, rather 
than being centred on the E = 0.06 profile. Thus, one must conclude that even this 
relatively weak comparison between the theory and the data, involving the normalized 
profile shape, does not yield a conclusive result. 

Figure 12 presents the amplitude-wavelength scaling measured for the deep-water 
runs, together with the theoretical scaling predicted by the KdV, Benjamin- 
Ono, and finite-depth analyses. Again, one sees that none of the three theories 
accurately (or even approximately) describes the experimental results. The extent 
t o  which all of these theories are in disagreement with the data is, perhaps, 
somewhat surprising, particularly in light of the reasonably good results obtained in 
the shallow-water experiments. For example, one notes that the KdV theory has a 
slope which agrees fairly well with the data (on a log-log plot), but overpredicts 
h,/h by a factor of almost 2. The second-order KdV theory exhibits much the same 
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behaviour that was observed in the shallow-water configuration, but does not lead 
to any improvement in agreement with the data. For the Benjamin-Ono and finite- 
depth analysis, one finds that both theories intersect the data, but clearly have the 
wrong slope. 

4. Discussion of results and conclusions 
Based upon the experimental results discussed in the previous section, the following 

general observations may be made. First, in the shallow-water configuration the 
first-order inviscid Korteweg-de Vries theory agrees in a reasonably quantitative 
manner with the experimental data with regards to the profile shape and the soliton 
amplitude-wavelength relationship. In  particular, one finds that the profile shape 
matches the predicted ‘ sech2 ’ profile almost exactly. Furthermore, the amplitude- 
wavelength relationship predicted by the first-order theory is valid for wave ampli- 
tudes as large as e x 0.2, and the inclusion of second-order nonlinear terms extends 
the useful range of the KdV theory to wave amplitudes of e x 0.8. The viscous effects 
discussed in 3 3.2 appear to slightly alter the amplitude-wavelength relationship for 
small amplitudes, roughly e < 0-1, but these deviations from the inviscid theory are 
not large, and presumably could be accounted for using the viscous KdV equation 
given by equation (11). In  short, one concludes that the present investigation has 
quantitatively validated the adequacy of the Korteweg-de Vries analysis as applied 
to internal waves in fluids of limited vertical extent. 

Having noted the reasonably good results of the first portion of the investigation, 
the obvious question which arises is why the experimental results of the deep-water 
experiments are described so poorly by any of the available theories. Since the identical 
procedures and data-processing techniques were used on both the deep- and the 
shallow-water data, we feel that the deep-water experimental results are not in error. 
With regard to the theoretical analyses, the following comments may be made. All of 
the theories discussed in this paper consider fluid systems having wave motions which 
are both weakly nonlinear and in some sense long. In the Korteweg-de Vries a.nalysis, 
‘long’ is measured relative to the total depth of the fluid. In the deep-water configura- 
tion, using the theoretical KdV scale relationship, the wavelength h is predicted to be 
‘long’ relative to the total depth H (say, h / H  2 10) when e is smaller than about 
0.001. Hence, in the deep-water configuration the radius of convergence of the KdV 
theory is extremely limited. Since most of the data lie in the amplitude range 
0.025 < e < 0.6, the disagreement between the theory and experiment is not 
unexpected. 

A similar argument may be made regarding the Benjamin-Ono analysis. Here, the 
assumption is made that the wavelength is much shorter than the overall fluid depth. 
In  the deep-water configuration, this theory would predict that h is much smaller 
than H (say AIH < 0.1) when 8 is greater than about 0.5. However, in this region the 
weak nonlinearity assumption is violated, and one again concludes that the dis- 
agreement with the data probably results from the theory being applied outside of its 
domain of validity. 

The failure of the finite-depth theory to describe the data adequately is a more 
difficult matter to explain. Ostensibly, the important assumptions which are inherent 
in this theory are that the waves are weakly nonlinear, and that the thermocline is 
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thin relative to the total fluid depth. No constraint is placed upon the wavelength of 
the disturbance, other than it must be long relative to the thermocline thickness. 
Consider first the weak nonlinearity assumption. If one may extrapolate from the 
results of the shallow-water experiments, one would conclude that this assumption 
is justified for waves having amplitudes smaller than about E = 0.2. At least a portion 
of the deep-water data lie in this parameter range, but even here there is total dis- 
agreement between the theory and the experiment. 

Regarding the second assumption dealing with the thinness of the thermocline, one 
might question whether a depth ratio H / h  = 36.044 is sufficiently large to be 
classified as a ‘thin’ thermocline. This question may be resolved in the following 
manner. In  the finite-depth theory, the thin-thermocline assumption is made in order 
to simplify the dispersion relation (for arbitrary stratification) to an analytic form. 
In  the two-layer system, however, the dispersion relation is already known in exact 
analytic form (cf. Lamb 1932, p. 371). Hence, if one is willing to accept numerical 
solutions, one could substitute this exact analytic representation into the dispersive 
term of Whitham’s equation, and check to see if the computed results are significantly 
different from those predicted by the finite-depth theory. These calculations were 
performed, using the pseudo-spectral code previously mentioned, with depth and 
density ratios corresponding to those of the deep-water configuration, and wave 
amplitudes ranging between 0.01 < E < 1.  For a given value of E ,  the initial condition 
to the program was  the wave profile predicted by Joseph’s (1977) solitary-wave 
solution to the finite-depth equation, and the calculations were run for times between 
t = 0 and t = 20 seconds, which roughly corresponds to the time required for a pulse 
to make two transits through the test section of the channel. If the thin-thermocline 
assumption is a valid approximation in the present deep-water configuration, then 
Joseph’s profile should also be the solitary wave solution of the more general equation. 
This, in fact, turns out to be the case. The calculations revealed that use of the exact 
dispersion relation had almost negligible influence on Joseph’s profile, causing a 
modest change in the wave amplitude of typically about 1 yo during the computation 
time. On the basis of these calculations, then, one must conclude that the disagreement 
between the finite-depth theory and the experimental data is not a result of applying 
the theory outside of its domain of validity. 

At this time, the present authors do not see a way of resolving this apparent dis- 
crepancy between our data and the existing theoretical analyses. We note, however, 
that similar results have recently been reported by Hammack, Leone & SeguP (1981). 
In this work, the experimentally measured soliton half-amplitude wavelength 
( E  = 0-18, H l h  = 9) is underpredicted by the finite-depth theory by about 2074, 
quite consistent with our results. Clearly, further work in this area is required before 
a conclusive statement may be made regarding the proper theory to be used in physical 
systems where the disturbance wavelength is comparable to the total fluid depth. 
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Appendix A. Extension of the KdV equation to second order 
Consider a two-fluid system boundedaboveand below by rigid walls. The lower- and 

upper-layer densities are p1 and p,, and the corresponding fluid depths are h, and h,. 
The relevant equations and boundary conditions are given by 

v2+1,2 = 0, &,(z = h,) = #2,@ = h,) = 0, 

Introducing the slow space and time scales 

5 = E J ( X  - cot),  7 = E%, 

where E = a/(h, + h J ,  and expanding the velocity potential and interfacial dis- 
placement as 

# = 4 # ( 1 ) ( &  792)  + 4 2 ) ( 1 7  722)  + * * .I, 

T = %l) ( E ,  7) + E 2 T ( 2 ) ( E ,  7) + * .  3 9  

and solving (A 1)  recursively, one finds cg a t  O(s ) ,  

at 0 ( e 2 ) ,  and 

The amplitude-wavelength scale relationship is given to second order by 

where 
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The constant C in (9a) is defined by 
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C = 3E4/4E2 - 15E3 d 1 ) / E 2  - Z6/8E2 + E6/2E2, (A 6) 

The preceding analysis assumes the upper boundary condition to  be a rigid lid. An 
analysis assuming a free-surface condition proceeds along similar lines, and the 
resulting amplitude-wavelength scale relationship is given by 

l + r s [ l - ( l - ~ ) ~ ] / u  h, 1 + rs[l  - (1 - u3)]/u 
h, r2 - u3s ( x ) 2 / ( i - + r 2  r2 + mu2 
a - = +$ 

where 

u=-(1-s ) - -  [I;, ( ( l ; r ) ,  - - r ( l - s )  )+I-' -- r 
r 
S S' 

Appendix B. Viscous damping of internal solitary waves 

facial displacement 9 is a solitary wave given by 
Consider a two-fluid system confined between two rigid walls where the inter- 

~ ( x ,  t )  = a sech2 (yt) - , 
where 

ah2 
- = 4 P l , P 2 ,  h,, h,) 
h! 

andp,, p,, h,, h, are the lower- and upper-layer densities and fluid depths, respectively. 
Following Keulegan (1948), the wave-induced fluid velocity in the wall boundary 

layer for the lower layer is given by 

where v, is the lower-layer kinematic viscosity. A similar expression may be written 
for the upper-boundary-layer flow. The rate of energy dissipation, dEJdt ,  in the lower 
boundary layer is given by (Keulegan 1948) 

where B is the breadth of the cha,nnel. The total energy dissipated in the lower layer 
includes contributions from the channel side walls and the sheared interfacial region. 
The side-wall contribution may be calculated through geometrical parameters. The 
interfacial contribution could be calculated by examining the boundary-layer flow 
in this region, but, for simplicity, we assume that the contribution from the interfacial 
shear region (in the lower layer) is simplyequal to that due to the lower-wall boundary 
layer. Although approximate, we feel that  this is not too unreasonable, and the 
analysis is somewhat simp1ified.t Dissipation in the upper layer is computed in a 
similar manner, except that  the contribution from the upper-wall boundary layer is 
neglected. This is because the upper boundary in the experiment is a frec surface and 
should behave as a stress-free boundary. 

region. 
t Note added in. proof: Hammack et al. (1981) perform the analysis within the interfacial 
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The total energy contained in the wave field, E,, is given by 

E ,  = $BgAph”,.ad, 

where = a/h, and Ap = p 2  - p l .  Assuming 01 $: a(t)  (i.e. a quasi-steady assumption), 
we may differentiate this expression with respect to time, and equate this with the 
total rate of energy dissipation. After some manipulation, one gets an expression for 
the amplitude decay ofthe solitary wave, given by 

where 

In  the limit p2+0, the above expression reduces to that derived by Keulegan (one 
needs to exclude the contribution from the interfacial region) for the slow viscous 
damping of a surface solitary wave.t 

Appendix C. Evolution equation for long internal waves in a viscous 
medium 

The following analysis closely follows that of Kakutani & Matsuuchi (1975). Con- 
sider a fluid system with a mean density profile p ( z )  which is confined between an 
upper and lower boundary, separated by a distance H ;  po is a reference density, g is 
the acceleration due to gravity, and the vertical co-ordinate z is zero a t  the lower 
boundary. The flow field is divided into two inner regions, lying in the neighbourhood 
of the viscous boundary layers on the rigid surfaces, and an outer region sufficiently 
far removed from the boundaries that viscous effects are negligible. 

Introducing the KdV scaling 

< = €.a(X-cot), 7 = B Q t ,  

where B measures the wave displacement and co is the linear long-wave phase speed, 
expanding the outer dependent variables (denoted do), w(O), . . . ) as 

u(0) = € U p  + €2up + . . . , 
W(0) = 8 W(0) = €[€wp + €2wp + . . . 1, 

and requiring the O($) system of equations to have non-singular solutions yields 

= p[$wp)’ - $ h ’ w p ] I ~ o .  (C 1 )  

Here, primes denote differentiation with respect to z, the stream function 
II. = f(<, 7) $@I, and J ( p ,  $) is given by 

t Note that Keulegan approximates 124/4n$ as &. 
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The velocity potential Q is determined through the eigenvalue problem (with as yet 
unspecified boundary conditions) 

(PQ’)’-L H -  ’Q E 0. 
c; 

In order to proceed, one needs to consider the inner viscous problem so that boundary 
conditions on d ,  wF),  and wko)’ may be prescribed a t  z = 0,H. 

Within the viscous inner regions, the characteristic vertical length scale is the 
boundary-layer thickness, which for the present experiment can be shown to be 
O(E) .  Thus, the appropriate inner variables are defined as 

71 = Z / E ,  72 = (H--X)/E, 

where yl and v2 are the stretched co-ordinates in the lower and upper boundary 
layers, respectively. E and r remain as previously defined. Substituting this scaling 
into the governing equations, expanding the inner dependent variables in powers 
of E ,  and matching with the outer flow solution yields 

$(0) = 0,  

W p ” ( 0 )  = 0, 

where RT = ( g H ~ H / v , ) & ,  and v1 is the kinematic viscosity at  the lower boundary. A 
similar expression may be derived for the upper boundary layer. 

Substituting (C 2 )  into (C 1) yields the long-wave evolution equation 

where 

and co and $ are determined through the eigenvalue problem 

(pQ’)‘-@-’$ = 0, 4(0) = # ( H )  = 0. 
c; 

We note here that this model was formulated under the assumption that p ( z )  is a 
continuous function. Hence the boundary layer within the interfacial shear region 
of the present experiment has not been explicitly included. For the purposes of making 
comparisons with the experimental data, we included the interfacial shear effects (as 
well as side-wall effects) in an ad hoc fashion by making appropriate modifications to 
the coefficient c3 in (C 3), consistent with what was done in appendix B. 
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